A hőszivattyú napjaink egyik feltörekvő fűtési és hűtési megoldása, ami számos előnnyel rendelkezik. Azon túl, hogy az egyik leggazdaságosabb fűtési és hűtési megoldás – különösen napelemmel párosítva –, környezettudatosság szempontjából is a legjobb választás fűtés és használati melegvíz készítéséhez, mert kifejezetten energiatakarékos. Joggal merül fel a kérdés, hogy akkor miért nem ezt használják minden újonnan épülő vagy most felújított lakásban, családi házban? Mi az és mit tud a hőszivattyú?
Számos kérdés adódik a témában, amire most választ adunk.
Mi a hőszivattyú?
A hőszivattyú olyan fűtő/hűtő berendezés, ami az egyik oldalról kivont hőt a másik oldalra szállítja, tehát az egyik irányba fűt, a másikba pedig hűt. Azt is mondhatnánk, hogy a hőszivattyú a természetben "ingyen" elérhető energiát hasznosítja fűtésre, használati melegvíz előállításra, ráadásul képes a lakás hűtésére is. Utóbbi esetben a hőszivattyú fordított üzemmódban működik, vagyis ebben a funkciójában nem fűti, hanem hűti az otthonunkat, mindezt úgy, hogy a fűtéscsövekben nem melegvizet keringtet, hanem hideget. Megfordítva a körfolyamatot, a házból vonja el a hőt és vezeti a szabadba. Működési elvét tekintve a hőszivattyú megegyezik a hűtőszekrényével. A hőszivattyú többféle közegben lévő energiát is képes hasznosítani, ez lehet föld, talajvíz vagy levegő, az üzemeltetéshez szükséges elektromos energia előállítása ezektől függetlenül környezetbarát módon, károsanyag kibocsátás nélkül is történhet, pl. napelemek segítségével. A fűtéshez szükséges melegvíz vagy meleg levegő előállítására alacsony környezeti hőmérséklet (akár -20°C) esetén is képes a hőszivattyú, így a magyarországi hőmérsékleti viszonyok között is kiválóan megállja a helyét: nem véletlen, hogy Svédországban is a legtöbb háztartás levegő – víz hőszivattyúval fűt.
A hőszivattyús rendszer működése...
A hőszivattyú működési elve elsőre bonyolultnak tűnhet, de ha benézünk a dolgok mögé, mindjárt meg is nyugodhatunk. Adódik a kérdés: hogyan lehet a kinti hidegebb levegőből az otthonunkat fűteni úgy, hogy a hőmérséklet-különbség akár 30-32°C is lehet a külső (-10°C) és az elérni kívánt benti (22°C) hőmérséklet között.
Hőszivattyús fűtés működési elve:
A működése 4 lépésben írható le:
Nézzük meg, hogy pontosan mit is jelentenek ezek!
A hőszivattyú működése – 4 lépésben:
I. Párologtatás
A ciklus elején a hűtőközeg folyékony halmazállapotban van, és a hőmérséklete nagyon alacsony, alacsonyabb, mint a körülötte lévő közeg, pl. levegő, vagy víz hőmérséklete, így el tudja nyelni a környezeti hőt. Ez azt jelenti, hogy egy hőszivattyú esetén pl. -10C külső hőmérsékleten a hűtőközeg akár -30C-os is lehet, ezt "melegíti" a levegő. A hűtőközeg hőmérséklet és nyomás változás esetén képes halmazállapotot is váltani: folyadékból gáz lesz, ha növeljük a hőmérsékletet, így ezzel az elpárologtatással újabb energiát nyerhetünk majd ki a rendszerből. A hőszivattyúkban található hűtőközeg az esetek többségében speciális gázok keveréke különböző arányokban, amely gázok nyomás hatására folyékonnyá válnak. Ezt a folyékony, alacsony hőmérsékletű, nyomás alatt lévő hűtőközeget a környezet felmelegíti, és gáz halmazállapotúvá válik. A párologtatás fűtés üzemmódban a hőszivattyúban található hőcserélőben ("elpárologtató") zajlik le.
II. Sűrítés
Az előzőleg felmelegített gáz halmazállapotú hűtőközegből szeretnénk még több hőt kinyerni, amit a hőszivattyúban lévő kompresszor segítségével érhetünk el. A hőcserélőből érkező gázt a kompresszor összenyomja, ennek hatására felmelegszik, majd a felmelegített, nagynyomású gázt továbbítja a hőszivattyú rendszer többi elemének. A kompresszor működése természetesen energiát igényel – legyen az elektromos vagy gáz meghajtású kompresszor –, viszont a megfelelő hatásfokkal működő hőszivattyú esetén a kompresszor sokkal kevesebb energiát használ el, mint amennyit a hőszivattyú szállítani tud.
III. Cseppfolyósítás
A hőszivattyú kompresszora által összesűrített és felmelegített gázt – amelynek a hőmérséklete már alkalmas az otthonunk fűtésére – bevezetjük egy újabb hőcserélőbe, ahol az átadja a hőt a lakás fűtővízének. A hőleadás következtében a gáz halmazállapotú hűtőközeg folyékony lesz, kondenzálódik (lecsapódik). Itt szintén felhasználjuk a halmazállapot-változáskor keletkező, úgynevezett kondenzációs hőt. A hőszivattyúban lévő olyan hőcserélőt, ahol ez a folyamat végbemegy, kondenzátornak nevezzük.
IV. Oldódás
Az előző lépésben a hőszivattyú már megfelelően felmelegítette a fűtővizünket ahhoz, hogy otthonunkban kellemes hőmérséklet legyen. Most a meleg, folyékony hűtőközeget kell kivezetnünk a kinti rendszerbe, és ilyenkor a folyamat kezdőik elölről. A hőszivattyú egy expanziós szelepen vagy adagolón keresztül vezeti ki a hűtőközeget a külső egységbe. Ennél a lépésnél a hűtőközeg az alacsony nyomású oldalra kerül, és a kinti hőmérsékletnél alacsonyabb hőmérsékletre hűl le. Természetesen a hőszivattyú fűtés működése során számos egyéb folyamat játszódik le, de a főbb lépések ezek. A hőszivattyú által szállított hő mintegy 75%-át a környezetből vonja el, a fennmaradó 25%-ot pedig a kompresszió során keletkezet energiából állítja elő.
Hőszivattyú típusai
Annak alapján, hogy milyen környezetből nyerik ki és adják le a fűtéshez vagy hűtéshez szükséges energiát, számos hőszivattyú típus létezik. Három változat a legelterjedtebb:
A felsoroltakon kívül léteznek még hőszivattyús üzemű klímaberendezések (légkondicionálók) is, amiket nevezhetünk levegő-levegő hőszivattyúnak is.
A hőszivattyúk ezen csoportja – ahogyan az a nevéből is kiderül – a külső levegőből von el hőt, amivel azt a vizet melegít fel, ami a fűtőtestekben kering. Felépítését és telepítését tekintve ez a legegyszerűbb, és ezért a legkedveltebb hőszivattyú típus.
A levegő-víz hőszivattyú működése is könnyen áttekinthető: általában két egységből, egy béltériből és egy kültériből áll, amelyek telepítése nem igényel semmilyen extra munkát előkészítő, csupán a megfelelő helyet kell nekik biztosítanunk.
A levegő-víz hőszivattyúk COP értéke kisebb, mint például a talajszondás hőszivattyúé, a magyarországi hőmérsékleti viszonyokhoz mégis egy jó, általában optimális választás lehet, a legalacsonyabb befektetési költséggel megvalósítható és kiváló hatékonyságú rendszer.
A COP – jósági fok – egy energiahatékonyságot mutató arányszám. A leadott fűtőteljesítmény és az ehhez felvett elektromos teljesítmény hányadosa. Fontos tudni, hogy a COP értéke az adott hőszivattyúra +7°C környezeti hőmérséklet és 35°C fokos előremenő fűtővíz esetén került meghatározásra (A7/W35). Sok esetben megadják ezt az értéket +2°C környezeti hőmérséklet és 35°C fokos előremenő fűtővíz esetén is, ez sokkal fontosabb a magyarországi éghajlati viszonyok esetében. Minél magasabb a COP értéke, annál jobb hatásfokú a hőszivattyú.
Előny: Földrajzi adottságoktól függetlenül bárhova telepíthető és üzembehelyezhető ez a fajta hőszivattyú, ahol biztosított az elektromos áramellátás. A telepítés nem jár plusz előkészületi munkákkal és költséggel, így a beruházás összege alacsony szinten tartható. A megtérülési idő az alacsony telepítési költségeknek köszönhetően relatív alacsony, amihez egy jó, 3.5-4.2 COP értéket produkál a levegő-víz hőszivattyú.
Hátrány: Az általa előállított hő függ a külső hőmérséklettől. Szélsőséges időjárási viszonyok esetén rásegítést igényelhet, ami csökkenti az üzemeltetési hatékonyságot, egyúttal növeli a költségeket.
Ha a hőszivattyú kiválasztásakor kizárólag a hatékonyságot és az üzemeltetési költséget (COP) vesszük figyelembe, akkor a víz-víz hőszivattyú a legjobb megoldás. Ennél a hőszivattyú típusnál a talajvízből nyerjük ki a fűtéshez szükséges hőt. Ezt a vizet majd visszajuttatjuk a kivétel helyére, a talajvízbe vagy rétegvízbe, így biztosítva a körforgást.
A víz-víz hőszivattyú működési elve miatt szükségünk van egy forrás kútra, amiból a vizet nyerjük. Ezen kívül szükségünk van egy, vagy akár több, nyelő kútra is, ahová visszajuttatjuk a fűtéshez elhasznált vizet. A telepítés előtt érdemes próbafúrást végezni, hogy megbizonyosodjunk róla, van-e elegendő víz, és ha igen, annak minősége alkalmas-e a hőszivattyú működtetéséhez.
Előny: A COP (hatékonyság, jósági tényező) érték itt a legmagasabb, akár nagyon hidegben is 5-7 között lehet. Aki víz-víz hőszivattyút választ, annak nem lesz szüksége alternatív fűtési megoldásokra, a hőnyereség mértéke és az üzemeltetési költségek jól tervezhetők. Ezzel a hőszivattyú típussal gyakorlatilag ingyen lehet hűteni.
Hátrány: A telepítés előtt sok előkészületet – kutak fúrása –, és így többletköltséget igényel. A víz elapadása esetén a hőszivattyú nem működik, márpedig ezeknek a hőszivattyú rendszereknek sok, óránként több köbméternyi vízre van szükségük.
Ebben az esetben a hőszivattyú a talaj geotermikus energiáját használja, abból nyeri a hőt az otthonunk számára. Itt az előző típushoz hasonlóan szintén fúrnunk kell, hogy a szonda KPE csöveit megfelelő mélységbe juttassuk le a talajban. A csöveket 80-120 méteres mélységben érdemes lefúrni, mindezt úgy, hogy egy furatba két előremenő, és két visszatérő csőre vagy egy előremenő és egy visszatérő csőre van szükség. A fúrás itt összetettebb feladat, bányakapitánysági engedélyt is igényel.
Előny: Magas, 4-5 közötti COP-érték, amit a külső hőmérséklettől függetlenül ér el. Ez a kis helyigényű hőszivattyús rendszer teljesen önállóan ellátja egy családi ház fűtési szükségletét, nyári időszakban a hűtést szinte ingyen biztosítja.
Hátrány: Bár a geotermikus fűtés működése költséghatékony, a fúráshoz bányakapitánysági engedély szükséges, a talajszondás hőszivattyú telepítése nagyon költséges.